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Abstract. We develop a semi-classical method to simulate the motion of atoms in a dissipative optical
lattice. Our method treats the internal states of the atom quantum mechanically, including all nonadiabatic
couplings, while position and momentum are treated as classical variables. We test our method in the one-
dimensional case. Excellent agreement with fully quantum mechanical simulations is found. Our results are
much more accurate than those of earlier semi-classical methods based on the adiabatic approximation.

PACS. 32.80.Pj Optical cooling of atoms; trapping – 03.65.Sq Semiclassical theories and applications

1 Introduction

One of the most spectacular achievements in the field of
laser cooling is the discovery of cooling below the Doppler
limit in optical lattices, so-called Sisyphus cooling [1]. An
optical lattice is a standing wave of laser light, forming
a periodic light-shift potential for atoms moving in the
laser field [2,3]. In the optical lattices used for cooling
the frequency of the lasers are tuned close to an atomic
resonance. The atoms thus undergo cycles of absorption
followed by spontaneous emission. Under the right exper-
imental conditions, the spontaneous emission causes an
overall loss of kinetic energy of the atoms, i.e., cooling.

Optical lattices are also widely used in Bose-Einstein
condensation experiments [4] and for quantum state ma-
nipulation [5]. These lattices are tuned far from atomic
resonances, in order to avoid spontaneous emission which
would destroy the coherence of the condensate. Therefore
these far detuned lattices do not provide any cooling.

The name Sisyphus cooling comes from the first the-
oretical model for the process [6,7]. This model is based
on optical pumping between the magnetic sublevels of the
light shifted atomic ground state. However, at least in its
original form it relies on a number of simplifying assump-
tions, such as a semi-classical approximation, spatial av-
eraging, and a simplified level structure (a ground state
with angular momentum Jg = 1/2, and an excited state
with angular momentum Je = 3/2). Whereas this model
correctly predicts some qualitative features of cooling in
optical lattices, it is too crude to provide an overall quan-
titative agreement. Instead, a number of more advanced
semi-classical methods have been developed including the
spatial dependence of friction and diffusion [8,9] and the
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full internal state structure [10]. A quantum mechanical
method based on the band structure of the periodic poten-
tials has also been developed [11]. The most complete the-
oretical treatment is the Monte-Carlo wavefunction tech-
nique [12], a fully quantum mechanical method based on
stochastic wavefunctions.

In this paper, we develop and test a new semi-classical
method for simulating the motion of atoms in a near-
resonant optical lattice. The most important approxima-
tion of our method is that the position and momentum of
the atoms are treated as classical variables. Other approx-
imations include a classical treatment of the light field,
and adiabatic elimination of excited states of the atoms,
but otherwise we make as few approximations as possible.
In particular, the internal states are treated quantum me-
chanically, allowing for any kind of coherent superposition
between magnetic sublevels.

Even though more exact fully quantum mechanical
theoretical methods exist, semi-classical methods are valu-
able, partly because they are less demanding numerically,
but also because they provide a simpler conceptual frame-
work in which it is easier to formulate an intuitive picture
of e.g. the mechanisms involved in the cooling process. Up
to now, all semi-classical methods for laser cooling in op-
tical lattices have been based on atoms that are pumped
between definite internal states as they move through the
lattice. To this end a basis of so-called adiabatic states, di-
agonalizing the light-shift potential at every position, has
been used instead of the diabatic basis of the magnetic
substates [10]. Coherences between adiabatic states have
not been included in the description, and neither have
so-called nonadiabatic couplings arising from the position
dependence of the adiabatic basis. Thus, the motion of
the atoms is described by purely classical equations, al-
beit the various potentials, pumping rates and diffusion
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coefficients have been derived from a quantum-mechanical
origin. These adiabatic semi-classical methods reproduce
some of the qualitative features of Sisyphus cooling, e.g. a
linear relation between temperature and irradiance at high
irradiances [13]. However, we show that even at very high
irradiances the slope of this linear dependence does not
agree with fully quantum-mechanical simulations. At the
lower irradiances relevant to most experiments the adia-
batic semi-classical method deviates even more severely
from the fully quantum-mechanical results. Both these
problems are solved by the nonadiabatic semi-classical ap-
proach.

2 Theory

In this section we develop the basic semi-classical equa-
tions of motion, on which our simulations are based. For
generality the theory is developed in three dimensions.
The angular momenta of the ground and excited states
of the lattice transition are denoted by Jg and Je respec-
tively, and the corresponding magnetic quantum numbers
are Mg and Me. The light field ξ(r) creating the lattice
could take different forms, but will in the end be assumed
to have a lin⊥lin configuration in one, two or three dimen-
sions [3]. That is, the lattice is created by the interference
pattern of light fields, forming lattice sites with alternat-
ing σ+ and σ− polarizations.

We start from the optical Bloch equations for an atom
in a standing wave laser field [14]. They can be derived
under very general conditions, and represent for practical
purposes an exact fully quantum mechanical description
of atomic motion in an optical lattice. Our first important
approximation is that the population of the excited state
is sufficiently low to allow its adiabatic elimination. The
condition for this is that the saturation parameter

s0 =
Ω2/2

∆2 + Γ 2/4
� 1. (1)

Here ∆ is the detuning from resonance, Γ the natural
width of the excited state, and Ω is the Rabi frequency1.
The details of the adiabatic elimination of the excited
states can be found e.g. in reference [14]. This approxi-
mation is an important simplification, since it reduces the
master equation for the full density matrix, to an equation
for the (2Jg+1)×(2Jg+1) density matrix σ of the ground
states. The resulting equation for the evolution of σ reads

i�σ̇ =
[
Ĥ, σ

]
+ i� σ̇|sp . (2)

The first term on the right-hand side of this equation rep-
resents the Hamiltonian part of the evolution. The second

1 We use the Rabi frequency based on the total laser field.
This is the same convention as was used, e.g., in reference [10].
Sometimes the Rabi frequency is instead on the laser irradiance
per beam, which for a one-dimensional lin⊥lin configuration is
half the total irradiance.

term represents the non-Hermitian evolution due to spon-
taneous emission. The Hamiltonian contains the kinetic
term and the light-shift potential,

Ĥ =
p̂2

2m
+ �∆′Â(r), (3)

where p̂ is the momentum operator of the atom, r its
position, ∆′ = ∆s0/2, and the operator Â(r) is given by

Â(r) =
[
d̂− · ξ∗(r)

] [
d̂+ · ξ(r)

]
. (4)

Here d̂+ is an operator that promotes an atom from the
ground to the excited state, while d̂− = (d̂+)† is respon-
sible for the reverse process. In the basis of circular polar-
ization vectors

ε̂±1 = ∓ 1√
2

(x̂ ± iŷ) , ε̂0 = ẑ, (5)

they have simple expressions in terms of Clebsch-Gordan
coefficients

〈JeMe|d̂+
q |JgMg〉 = 〈JgMg|d̂−q |JeMe〉∗

= 〈JeMe | Jg1Mgq〉. (6)

In the basis of the magnetic substates Mg the operator
Â(r) is represented by a matrix A(r).

For the simple model atom with Jg = 1/2 and Je = 3/2
A(r) is a diagonal matrix. However, most atoms of interest
have a more complicated level structure, including non-
diagonal couplings in the potential. Therefore previous
semi-classical methods have used an adiabatic basis, where
the atomic states are the eigenstates of A(r). Whereas
A(r) is diagonal in the adiabatic basis, the position de-
pendence of the basis gives rise to nonadiabatic couplings
between adiabatic states. In the adiabatic approximation
these couplings are neglected. In our method we keep all
off-diagonal couplings. The results are then independent
of the basis used, and the simplest choice is to stay with
the magnetic levels Mg, the diabatic basis. Since this basis
is the same for all r, all couplings are included in A(r),
and their functional form can be calculated analytically
for a given laser configuration.

The second term on the right-hand side of equation (2)
contains processes associated with spontaneous emission.
Writing the matrix elements of σ in the position represen-
tation, 〈r | σ | r′〉 = σ(r, r′), its form is

σ̇(r, r′)|sp = −Γ ′

2
[A(r)σ(r, r′) + σ(r, r′)A(r′)] +

3Γ ′

8π

×
∫

dΩk

∑
ε⊥k

B†
ε(r)e−ik·rσ(r, r′)eik·r′

Bε(r′), (7)

where Γ ′ = Γs0/2. The matrices Bε(r) are given by

Bε(r) =
[
d̂− · ξ∗(r)

] [
d̂+ · ε

]
. (8)

Hence, B†
ε represents the excitation of an atom by the

laser field, and its subsequent return to the ground state
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via spontaneous emission of a photon with polarization ε.
The factors exp(ik · r) represent the atomic recoil from
a spontaneously emitted photon with wave vector k. The
integration is over the directions of the emitted photon,
and the summation is over any basis spanning the allowed
polarization vectors. The recoil momentum of the atomic
transition is pR = �kR = �|k|.

Our goal is to approximate equation (2) by a semi-
classical equation where every atom has a definite position
and momentum, i.e. every atom follows a trajectory in
phase space. This is of course not allowed in quantum
mechanics, because of the uncertainty principle. Hence, a
quantum mechanical phase space cannot be defined, but
it is still possible to introduce a “coarse grained” version
of phase space through the Wigner function [15]

W (r, p, t) =
1
h3

∫
du

〈
r +

u

2

∣∣∣σ
∣∣∣r − u

2

〉
e−ip·u/�. (9)

In this work the Wigner function is a matrix with dimen-
sion 2Jg + 1. The Wigner transformation of equation (2)
becomes
(

∂

∂t
+

p

m
· ∇r

)
W (r, p, t) =

i
∆′

�3

∫
dqeiq·r/�

[
W

(
r, p +

q

2
, t

)
Ã(q)

− Ã(q)W
(
r, p − q

2
, t

) ]

− Γ ′

2�3

∫
dqeiq·r/�

[
W

(
r, p +

q

2
, t

)
Ã(q)

+ Ã(q)W
(
r, p − q

2
, t

) ]

+
3Γ ′

8π�6

∫
dΩk

∑
ε⊥k

∫
dq

∫
dq′ei(q−q′)·r/�

× B̃†
ε(q

′)W
(

r, p + �k +
q′ + q

2
, t

)
B̃ε(q). (10)

Here Ã and B̃ε are the Fourier transforms

Ã(q) =
∫

dre−iq·r/�A(r), (11)

B̃ε(q) =
∫

dre−iq·r/�Bε(r). (12)

No approximation has been made in going from equa-
tion (2) to equation (10), the Wigner transformation is
just another representation of the same physics. Now,
we introduce the semi-classical approximation. According
to this approximation the momentum distribution varies
smoothly and slowly over typical momentum transfers q
in equation (10). Since A(r) and Bε(r) have the same pe-
riodicity as the laser field, i.e. λ = 2π/kR, equations (11)
and (12) show that the typical size for q is the recoil mo-
mentum. Thus, the semi-classical approximation assumes
that the momentum distribution changes little for emis-
sion/absorption of a single photon. As long as the atomic

momenta are several recoil units large, and the effects of
quantization of the atomic states are small, this approxi-
mation can be expected to work well.

Invoking the semi-classical approximation we can make
a second-order Taylor expansion around p of the Wigner
distribution [16]

W (r, p + q, t) � W (r, p, t) + q · ∇pW (r, p, t)

+
1
2
(q · ∇p)2W (r, p, t). (13)

Using this expansion it is possible to replace Ã and B̃ε by
their counterparts in position space. The resulting equa-
tion for the semi-classical Wigner function, which now can
be interpreted as a phase-space distribution, is

(
∂

∂t
+

3∑
i=1

pi

m
∂i

)
W (r, p, t) = i∆′ [W (r, p, t), A(r)]

− Γ ′

2
{W (r, p, t), A(r)}

+ Γ ′ ∑
q=0,±1

B†
q(r)W (r, p, t)Bq(r)

+
�∆′

2

3∑
i=1

{∂piW (r, p, t), ∂iA(r)}

+
i�Γ ′

4

3∑
i=1

[∂piW (r, p, t), ∂iA(r)]

+ i
�Γ ′

2

∑
q=0,±1

3∑
i=1

[∂iB
†
q(r)∂piW (r, p, t)Bq(r)

− B†
q(r)∂piW (r, p, t)∂iBq(r)]

− i
�

2∆′

8

3∑
i=1

3∑
j=1

[
∂pi∂pj W (r, p, t), ∂i∂jA(r)

]

+
�

2Γ ′

16

3∑
i=1

3∑
j=1

{
∂pi∂pj W (r, p, t), ∂i∂jA(r)

}

− �
2Γ ′

8

∑
q=0,±1

3∑
i=1

3∑
j=1

[
∂i∂jB

†
q(r)∂pi∂pj W (r, p, t)Bq(r)

− 2∂iB
†
q(r)∂pi∂pj W (r, p, t)∂jBq(r)

+ B†
q(r)∂pi∂pj W (r, p, t)∂i∂jBq(r)

]

+
�

2k2
RΓ ′

5

∑
q=0,±1

3∑
i=1

ηi,qB
†
q(r)∂2

pi
W (r, p, t)Bq(r). (14)

In this equation we use the short-hand notation ∂i ≡
∂/∂ri, ∂pi ≡ ∂/∂pi, where i = x, y, z are the Cartesian
coordinates. The constants ηi,q come from the integration
over the direction of the spontaneously emitted photon,
and are given by

ηx,±1 = ηy,±1 = 3/4, ηz,0 = 1/2
ηx,0 = ηy,0 = 1, ηz,±1 = 1. (15)
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Although the equation is somewhat lengthy, it is possible
to give physical interpretations to its terms. The left hand
side is simply the kinetic term, i.e. the full derivative d/dt.
On the right, the terms where W (r, p, t) appear without
any derivative represent transfer of population between
states, either by couplings from non-diagonal terms of the
light-shift potential ∆′A(r), or by optical pumping. The
terms containing ∂piW (r, p, t) describe the motion of the
atoms due to forces from light-shift potential and the ra-
diation pressure. Terms containing second derivatives of
W (r, p, t) and first or second derivatives of A(r) or Bε(r)
describe the momentum diffusion due to fluctuations in
the number of photons absorbed. Finally, the term con-
taining ∂2

pi
W (r, p, t), but no other derivatives, contains

the momentum diffusion due to the recoil kick from spon-
taneously emitted photons.

Equation (14) is the most complete semi-classical ap-
proximation for the time-dependent distributions of atoms
in r and p space. It is classical in the sense that the
atoms are assumed to be particles with definite positions
and momenta. The internal states, however, are treated
fully quantum mechanically, including all off-diagonal cou-
plings and coherences. It is thus not possible to assign an
atom to a definite internal state, nor is it described as a
classical probability distribution over the different inter-
nal states, but as a quantum-mechanical superposition of
internal states.

In order to solve equation (14) we recast it into a
Langevin-type equation. That is, instead of calculating
distributions of atoms, we shall calculate phase-space tra-
jectories x̃(t) and p̃(t) of individual atoms. In doing this,
we still want to keep the quantum mechanical description
of the internal states. That is, the probability distribution
of an atom is

W (r, p, t) = w(t)δ (r − r̃(t)) δ (p − p̃(t)) . (16)

Here w(t) is a matrix of dimension 2Jg + 1 containing
the internal-state density matrix of the atom at time t.
Inserting this form into equation (14), and integrating over
position and momentum, the evolution equation for w(t)
is obtained

ẇ(t) = i∆′[w(t), A(r)] − Γ ′

2
{w(t), A(r)}

+ Γ ′ ∑
q=0,±1

B†
q(r)w(t)Bq(r). (17)

Here and below, we use the simplified notation r for r̃(t)
and p for p̃(t). It is, however, important to understand
that these are now time-dependent functions represent-
ing position and momentum of a single atom, which are
conceptually very different from the variables in equa-
tion (14). Using that 〈x〉 = Tr{xw} etc., we derive the
equations for the evolution of x and p (see, e.g., [17])

ẋ =
p

m
, (18)

ṗ = f(t) + χ(t). (19)

Here f (t) is a force and χ(t) is a fluctuating force with
the properties

〈χi(t)〉 = 0, 〈χi(t)χj(t′)〉 = 2Dij(t)δ(t − t′). (20)

The force is given by

fi(t) = − �∆′Tr {∂iA(r)w(t)}
− i

�Γ ′

2

∑
q=0,±1

Tr
{
[Bq(r)∂iB

†
q(r)

− ∂iBq(r)B†
q(r)]w(t)

}
. (21)

The first term above is the force arising from the second-
order light-shift potential, while the second term is the
radiation pressure. The diffusion coefficient is

Dij(t) = δij
Γ ′

�
2k2

R

5

∑
q=0,±1

ηi,qTr
{
Bq(r)B†

q(r)w(t)
}

+
Γ ′

�
2

2(1 + δij)

∑
q=0,±1

Tr
{[

∂iBq(r)∂jB
†
q(r)

+ ∂jBq(r)∂iB
†
q(r)

]
w(t)

}
. (22)

The first term arises from the recoil from photons spon-
taneously emitted in random directions, while the second
term is connected to fluctuations in the radiation pressure.
The latter term is in general anisotropic.

3 Numerical implementation

We simulate equations (17–19) in one-dimension. The
laser field has the form

ξ(z) = cos(kRz)ε−1 − i sin(kRz)ε+1. (23)

At the start of every time step the system is in a pure
quantum mechanical state. For every time step w, z, and
p are evolved using a second-order Runge-Kutta method.
The fluctuating force χ(t) is included as a term

r
√

2D dt, (24)

where r is a random number with zero average and unit
variance. This term only needs to be evaluated once every
time step [18].

At the end of a time step the system is in a mixed
state, that is, a state which cannot be expressed as a
quantum mechanical superposition of the magnetic sub-
levels. Instead the state may be interpreted as a statis-
tical mixture of pure quantum states. The system may
have been prepared in any of a number of quantum states,
each with a definite probability in the classical sense, but
due to our insufficient knowledge of the system we do not
know which preparation has been realized. (In the present
case the statistical mixture arises from the randomness of
spontaneous emission.) The mixed-state density matrix is
the weighted average of the possible outcomes. However,
the phase-space trajectory of a single atom will not follow
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the average of several possible outcomes, but will instead
be determined by the forces derived from a single realiza-
tion of the random process. The statistical distribution is
instead probed by averaging over a large number of atoms.

Mathematically, the decomposition of the mixed-state
density matrix w into 2Jg + 1 pure states reads

w =
2Jg+1∑

i=1

λi|Φi〉〈Φi|. (25)

The coefficient λi are the eigenvalues, and |Φi〉 the cor-
responding eigenvectors, of w. Since w is a density ma-
trix, the eigenvalues satisfy the properties λi > 0 and∑2Jg+1

i=1 λi = 1, and can be interpreted as the classical
probabilities of the different states |Φi〉 [19]. Hence, at the
end of each time step the system has the probability λi

to make a “jump” into the pure state |Φi〉. Even though
a density matrix in general has an infinite number of de-
compositions into pure states, the decomposition above is
unique in the sense that it is the only one into a set of
linearly independent pure states.

For numerical efficiency the eigenvalues were obtained
using first-order perturbation theory, which is sufficiently
exact if dt is short enough. In practice, one of the eigenval-
ues will be very close to one, while the others are small or
zero. Thus, one can interpret the system as either staying
in the same state, or jumping to a new state. When the
eigenvalues obtained by perturbation theory indicate that
the system makes a jump, the accuracy is increased by a
full diagonalization of w. The expense in computer time
for this improvement is modest, since jumps are compar-
atively rare.

4 Results

In our simulations we used the parameters for the D2 line
in cesium, i.e. Jg = 4, Je = 5, and natural width Γ/2π =
5.2227 MHz, and recoil energy ER = 1.3692×10−30 J [20].
The diagonal elements of the diabatic potential for this
transition are displayed in Figure 1. We first investigated
the steady-state momentum distributions. For potential
depths �|∆′| ≥ 200ER the samples contained 5000 atoms,
and were iterated for the time 2500/Γ ′. To improve statis-
tics the momentum distribution was averaged over the last
1000/Γ ′ of the evolution time. For low potential depths
convergence is slower. Therefore we used 20000 atoms for
�∆′ < 200ER, and the evolution time 5000/Γ ′, with av-
eraging over the last 2000/Γ ′. For all runs the time step
was dt = 0.025/Γ ′, and the initial state a spatially uni-
form distribution with temperature of 10 µK.

Results for 〈p2〉 as a function of potential depth
�∆′/ER for a detuning ∆ = −10Γ are displayed in Fig-
ure 2. Our results are compared to a full-quantum simu-
lation using the Monte-Carlo wave function method [12].
The two methods are in excellent agreement. The relative
difference is at most about 20%. It is not clear how much
of this deviation can be attributed to the fundamental dif-
ference between the two methods, and how much is due to

0 π/4 π/2 3π/4 π
kRz

-1.00

-0.75

-0.50

-0.25

-A
(z

) ii

Fig. 1. Diagonal elements of the diabatic potential for the
Jg = 4 → Je = 5 transition. Each curve corresponds to a mag-
netic sublevel Mg of the ground state. Curves corresponding
to ±|Mg| share the same color coding, and differ only by the
phase π/2. States with Mg even (odd) are represented by solid
(dashed) curves.
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Fig. 2. Semi-classical results for 〈p2〉 (circles) compared to
full quantum results (squares). For comparison we also show
results based on the adiabatic approximation calculated sim-
ilarly to the method used in reference [10] (crosses), and the
same method improved by including also non-diagonal diffu-
sion coefficients (triangles). The detuning is ∆ = −10Γ .

e.g. statistical uncertainties or other numerical errors. For
deep potentials both methods give the same linear slope,
although with a slight offset. The agreement continues all
the way down through décrochage, i.e. the point where the
curve turns around and starts to increase again for small
potential depths, although statistical fluctuations in the
full-quantum data make comparisons more difficult here.

It also evident from Figure 2 that the present method is
a substantial improvement of the adiabatic method used in
reference [10]. The methods do not even agree at large po-
tential depths, where one would expect the nonadiabatic
corrections to become small. Improving upon this method
by including non-diagonal diffusion terms (for details see
Ref. [10]) does not substantially change the situation.
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Fig. 3. Position, momentum, energy, and internal state pop-
ulations as a function of time for a single atom moving in an
optical lattice. The potential depth is �|∆′| = 150ER, and the
detuning ∆ = −10Γ . In the lowest panel the black curve shows
the total population of the states Mg = ±4, the red Mg = ±3,
the green Mg = ±2, the blue Mg = ±1, and the orange Mg = 0.

We note that even in the limit of vanishing nonadiabatic
corrections our method differs from that in reference [10]
by allowing for coherences between the internal states. In
the adiabatic basis the potential does not induce any co-
herences between internal states, but such coherences are
still induced by optical pumping.

The semi-classical method also makes it possible to fol-
low the motion of a single atom as it moves through the
lattice. In Figures 3 and 4 we show the position, momen-
tum, energy and internal state distribution as a function
of time for a single atom in optical lattices with detun-
ings ∆ = −10Γ , and potential depths �|∆′| = 150ER and
�|∆′| = 1000ER respectively. The energy was calculated
as the sum of the kinetic energy and light-shift potential,
i.e.,

E =
p2

2m
+ �∆′Tr{A(z)w(t)}. (26)

The ratio between the potential, pumping and diffusion
terms in equation (14) depends on ∆/Γ only, and is hence
the same in both graphs. The only difference lies in the in-
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Fig. 4. Same as Figure 3 but for a deeper potential, �|∆′| =
1000ER.

ertial term p/m∂i. Increasing |∆′|, while keeping the ratio
∆/Γ constant, is equivalent to increasing the mass m by
the same factor. This can be seen comparing the graphs,
since the atom is less mobile in Figure 4.

At both potential depths the atom shows, after an ini-
tial cooling phase, a high degree of localization. While lo-
calized the atom populates mostly the extreme magnetic
states Mg = ±Jg. The energy is more or less constant,
fluctuating around half the potential depth. The ampli-
tudes of the oscillations in momentum and position vary
somewhat due to diffusion, but tend to stay within certain
bounds as long as the atom remains in the same poten-
tial well. We cannot see any clear trend towards smaller
oscillation amplitudes while the atom remains trapped in
a site, i.e., we see no local cooling.

The periods of localization are interrupted by brief
phases where the atom acquires enough energy to travel
over many potential wells, before once again getting lo-
calized. These excursions are most prominent at lower po-
tential depths. The periods when the atom is untrapped
are associated with abrupt changes of the internal state
of the atom, usually from odd to even magnetic states.
(The light-shift potential only induces odd–odd and even–
even couplings between magnetic states. Thus any pure
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Fig. 5. Time evolution of the mo-
mentum distribution for a potential
depth |∆′| = 130ER. The starting
temperature was 50 µK. The black
curve shows the semi-classical re-
sults, while the red curve shows re-
sults of a fully quantum mechanical
simulation.

quantum mechanical state is a superposition of only odd
or only even magnetic states.) During all periods of local-
ization the atom is in a state with similar internal-state
distribution and energy. Even when the energy sometimes
drops below this stationary value the atom is soon re-
turned to the same state.

These results are in qualitative agreement with our
earlier conclusion that Sisyphus cooling, especially at low
potential depths, works through a transfer of atoms be-
tween a hot and a cold mode [21]. The cold mode has
a momentum distribution, with a width that does not
change over time. This mode corresponds to the popu-
lation of atoms in the trapped state. The cooling process
is in effect a transfer of atoms from the untrapped to the
trapped state.

In Figure 5 we compare the semi-classical approxi-
mation to the time evolution of the momentum distri-
bution D(p) = dN(p)/dp (where N(p) is the number
of atoms with momentum p) to the results in [21], for
�|∆′| = 130ER. The bimodality of the distribution is very
clear also in the semi-classical results, and the agreement
with the quantum-mechanical results is very good. The
distribution of the hot mode is identical to within statisti-
cal uncertainties. This shows that the physics of untrapped
atoms, including their rate of transfer to trapped states,
is well described by our semi-classical method. The semi-
classical method gives a slightly more narrow cold mode,
in agreement with the results in Figure 2.

5 Discussion

We have developed a semi-classical method to simulate the
dynamics of atoms in optical lattices. Our results for the
average momentum distribution of the atoms, including
its time dependence, agree excellently with those of the
fully quantum mechanical method. To achieve an accurate

description it is necessary to include both populations of
and coherences between the internal states of the atom.
The external degrees of freedom may, at least in some
situations, be described classically, i.e., as particles with
definite positions and momenta.

The semi-classical approximation was introduced as a
second order Taylor expansion in p/pR of the Wigner func-
tion. According to our results 〈p〉rms � 4pR, and hence this
expansion should be a fairly good approximation. Never-
theless, there are some situations where the semi-classical
description must necessarily break down. One is when ef-
fects from the quantization of bound states are important.
Such effects will be most prominent when the atoms are
localized near the bottom of the potential wells. Another
is the coherent splitting of a wave packet. If the atomic
wavefunction is, e.g., partially transmitted to the next po-
tential well, the semi-classical method will describe this as
a classical probability (some atoms are transmitted, some
are not), while any coherence effects between the two parts
of the wave packet will be lost.

The conceptual simplicity of the semi-classical descrip-
tions makes it a useful aid in visualizing complex physi-
cal processes. It is also a flexible tool, which is relatively
easy to adapt to different physical situations. In the near
future we plan to extend the method to double optical
lattices [22]. Further studies of the cooling process, e.g. to
deepen the understanding of the bimodal velocity distri-
butions observed in experiment and full quantum simula-
tions, are underway.
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